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Abstract
A deep learning model was developed to identify osteoporosis from chest X-ray (CXR) features with high accuracy in internal 
and external validation. It has significant prognostic implications, identifying individuals at higher risk of all-cause mortality. 
This Artificial Intelligence (AI)-enabled CXR strategy may function as an early detection screening tool for osteoporosis. The 
aim of this study was to develop a deep learning model (DLM) to identify osteoporosis via CXR features and investigate the 
performance and clinical implications. This study collected 48,353 CXRs with the corresponding T score according to Dual 
energy X-ray Absorptiometry (DXA) from the academic medical center. Among these, 35,633 CXRs were used to identify 
CXR- Osteoporosis (CXR-OP). Another 12,720 CXRs were used to validate the performance, which was evaluated by the 
area under the receiver operating characteristic curve (AUC). Furthermore, CXR-OP was tested to assess the long-term 
risks of mortality, which were evaluated by Kaplan‒Meier survival analysis and the Cox proportional hazards model. The 
DLM utilizing CXR achieved AUCs of 0.930 and 0.892 during internal and external validation, respectively. The group that 
underwent DXA with CXR-OP had a higher risk of all-cause mortality (hazard ratio [HR] 2.59, 95% CI: 1.83–3.67), and 
those classified as CXR-OP in the group without DXA also had higher all-cause mortality (HR: 1.67, 95% CI: 1.61–1.72) 
in the internal validation set. The external validation set produced similar results. Our DLM uses CXRs for early detection 
of osteoporosis, aiding physicians to identify those at risk. It has significant prognostic implications, improving life quality 
and reducing mortality. AI-enabled CXR strategy may serve as a screening tool.
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Introduction

Osteoporosis is a prevalent condition, particularly among 
postmenopausal women, but it often goes unnoticed until a 
fracture occurs. Timely detection of osteoporosis is crucial 
for preventing osteoporotic fractures. In the United States, 
the incidence of fractures related to osteoporosis is more 
than four times higher than that of stroke, heart attack, 
and breast cancer combined [1]. According to the World 
Health Organization's meeting report, osteoporotic frac-
tures result in more hospital bed-days than these diseases 
in several high-income countries [2]. Hip fractures, which 
are among the most common osteoporotic fractures, can 
cause difficulties with walking, chronic pain, disability, 
loss of independence, and reduced quality of life. Shock-
ingly, 21% to 30% of patients who suffer from hip fractures 
pass away within one year [3]. Based on 2009 data from 
Taiwan, approximately 16,000 individuals experience 
hip fractures annually, with women being twice as likely 
as men to be affected. Furthermore, the incidence of hip 
fractures increases significantly with age, with Taiwan-
ese women between the ages of 70 and 80 having a 10% 
chance of experiencing a hip fracture [4]. The heightened 
potential for fragility fractures increases the likelihood of 
elevated risks in terms of all-cause mortality, as well as 
mortality attributed to cardiovascular diseases (CVDs) 
and cancer [5–7]. In a US study, osteoporosis increased 
all-cause mortality risk in total femur, femur neck, and 
intertrochanter areas, but not significantly for cancer or 
cardiovascular (CV) mortality [8].

Currently, the most reliable method of diagnosing osteo-
porosis is to measure bone mineral density (BMD) in the hip 
and lumbar spine using Dual energy X-ray Absorptiometry 
(DXA) [9]. According to the guidelines established by the 
World Health Organization (WHO), a BMD measurement 
that falls at or below 2.5 standard deviations from the young 
adult mean (T score ≤  − 2.5) indicates osteoporosis, while 
a T score ranging between − 1.0 and − 2.5 at any location 
indicates low bone mass or osteopenia. In addition, the US 
Preventive Services Task Force recommends BMD testing 
for women aged 65 and above as a preventive measure against 
osteoporotic fractures [3]. Despite its effectiveness, DXA has 
some disadvantages, such as the high cost of equipment and 
the risk of radiation exposure [10, 11]. Raising awareness 
about osteoporosis may be the most effective approach to pre-
vent osteoporotic fractures [12]. Unfortunately, elderly indi-
viduals have a low level of awareness regarding this disease 
[13]. Nevertheless, the present screening rates are notably 
insufficient [14], as only a minor proportion of eligible indi-
viduals undergo DXA examination [15]. This underscores the 
necessity for a risk assessment tool that promotes screening 
within high-risk populations [16].

A promising strategy for identifying individuals at risk 
of osteoporosis and fragility fractures is opportunistic 
screening through imaging methods other than DXA. This 
approach involves using radiographs that have already been 
taken for other clinical purposes, with no additional cost, 
time, or radiation exposure to the patient. For instance, 
several studies have utilized computed tomography (CT)-
based metrics to estimate BMD [17], classify osteoporosis 
[18], simulate DXA T scores [19], and predict fracture risk 
[20]. Compared to other imaging modalities, X-ray radiog-
raphy is more widely available, has broader applications, 
incurs lower radiation exposure and is generally more cost-
effective. Furthermore, radiographs provide excellent spatial 
resolution, allowing for the visualization of fine bone texture 
that is closely associated with bone density [21]. This makes 
it possible to differentiate individuals with osteoporotic frac-
tures from those without. Deep learning algorithms have 
surpassed traditional methods in terms of visual recognition 
accuracy [22], which is essential for clinical applications 
such as fracture detection [23, 24], retinopathy grading [25], 
and lung nodule identification [26]. Recent advancements in 
orthopedic research have paved the way for the application 
of DLMs in osteoporosis screening [27]. Previous studies 
have shown the feasibility of diagnosing osteoporosis based 
on radiographs of the lumbar spine and hip joint [28, 29], 
as well as measuring the BMD (g/cm2) of these sites from 
radiographs [9, 30]. Furthermore, two studies have utilized 
chest X-rays (CXR) for diagnosing osteoporosis [31, 32].

Our hypothesis is that a DLM can accurately classify 
osteoporosis by analyzing chest radiography and uncover 
a heightened risk of mortality in the Artificial Intelligence 
(AI)-predicted positive CXR- osteoporosis (CXR-OP) group. 
Our model focuses on classifying individuals into categories 
based on T scores (normal, osteopenia, and osteoporosis) 
using CXRs. Given the association between osteoporosis 
and increased mortality risk, individuals predicted as part 
of the CXR-OP group in the absence of DXA examinations 
should exhibit potential mortality risks. We trained our 
model using a large dataset from a medical center, aiming 
to achieve excellent predictive performance for osteoporosis 
classification, ultimately envisioning CXRs as a screening 
tool for osteoporosis.

Methods

Data source and population

The institutional ethics committee of the Tri-Service Gen-
eral Hospital (C202105049) reviewed and approved this 
study, and we retrospectively developed and evaluated a 
DLM internally and externally. The CXRs were collected 
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from two hospitals, an academic medical center in Neihu 
District (hospital A) and a community hospital in Zhongz-
heng District (hospital B), from January 1, 2010, to April 
30, 2021. Patients aged less than 20 years old were excluded.

Figure 1 shows the assignment of samples in this study. 
We identified CXRs in the posterior-anterior view with at 
least 1 DXA obtained within a window of ± 180 days of the 
index CXR. There were 24,448 patients with at least one 
CXR in hospital A. The 12,221 patients were used in the 
development set, which included 25,574 CXRs for DLM 
training. A total of 4,878 patients were assigned to the tun-
ing set. These patients provided 10,059 CXR s for guiding 
the training process and determining the optimal operat-
ing point for subsequent use. Finally, 7,349 patients were 
assigned to an internal validation set, which contained only 
the first CXR that was used for the accuracy test and follow-
up analysis. We also collected 5,371 patients in hospital B 
using the same inclusion criteria as the internal validation 
set to verify the extrapolation of the DLM.

Data collection

The BMD data (g/cm2) were collected using a DXA scan-
ner (Lunar Prodigy Series; GE Healthcare, Madison, WI, 
USA). The BMD values of the lumbar spine (anteropos-
terior projection at L1-L4) and the femurs (i.e., femoral 
neck, trochanter, and total hip) were measured. BMD and 
T scores for each lumbar vertebra and femur were then 

calculated using Encore V13.6 software. Participants were 
classified into three categories based on the WHO T score 
classification [2]. Osteoporosis is defined as a T score of 
less than − 2.5; osteopenia is defined as a T score of − 1 
to − 2.5; and healthy is defined as a T score above − 1. 
Serial scans for each participant were performed on the 
same day, and reports were confirmed and judged by expe-
rienced radiologists.

The disease histories were based on the corresponding 
International Classification of Diseases (ICD), Ninth Revi-
sion and Tenth Revision (ICD-9 and ICD-10, respectively) 
described previously [33]. The primary outcome of this 
study was the prediction of the DXA T score. Electronic 
medical records defined the status (the T score value) of 
the patient. These records were updated by hospital staff as 
needed. We also performed a secondary analysis on all-cause 
mortality and extensive CVDs, such as CV mortality, new-
onset acute myocardial infarction (AMI), new-onset stroke 
(STK), new-onset coronary artery disease (CAD), new-onset 
atrial fibrillation (Afib), and new-onset heart failure (HF). 
We defined a new-onset event as a record of the correspond-
ing ICD codes, such as AMI, STK, CAD, Afib or HF. For 
mortality, the survival time was calculated with reference to 
the date of the CXR record and we only included patients 
with follow-up hospital visits. Mortality event was captured 
through the electronic medical record. Moreover, data for 
alive visits were censored at the patient’s last known hos-
pital alive encounter to limit bias from incomplete records. 

Fig. 1   Development, tuning, internal validation, and external valida-
tion set generation and CXR labeling of bone mineral density. Sche-
matic of the dataset creation and analysis strategy, which was devised 
to assure a robust and reliable dataset for training, validating, and 
testing of the network. Once a patient’s data were placed in one of 

the datasets, that individual’s data were used only in that set, avoiding 
‘cross-contamination’ among the training, validation, and test data-
sets. The details of the flow chart and how each of the datasets was 
used are described in the Methods
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Patients meeting any of the above criteria before the index 
date of the CXR were excluded and defined as having a cor-
responding disease history.

Implementation of the deep learning model

The CXR images were recorded in Digital Imaging and 
Communications in Medicine (DICOM) format with a 
resolution of more than 3000 × 3000 pixels. The training 
details of the DLM for CXR were revised from a previous 
study [34], which was a 121-layer DenseNet. We resized our 
CXR to let the short side be 256 pixels without changing 
the aspect ratio. In the training stage, we randomly cropped 
224 × 224 pixels as input and applied a random lateral inver-
sion with 50% probability. In the inference stage, the 10-crop 
evaluation was used to generate 10 probabilities for each 
CXR, and the final prediction was based on their average.

We trained these DLMs with a batch size of 32 and an initial 
learning rate of 0.001 using the Adam optimizer with standard 
parameters (β1 = 0.9 and β2 = 0.999). An oversampling process 

was implemented to ensure that osteoporosis was adequately 
recognized. For each batch, we sampled 16 cases and 16 con-
trols in the development set. The learning rate was decayed by 
a factor of 10 each time the loss on the tuning set plateaued 
after an epoch. To prevent the networks from overfitting, early 
stopping was performed by saving the network after every 
epoch and choosing the saved DLMs with the lowest loss on 
the tuning set. L2 regularization with a coefficient of 10−4 was 
also applied to avoid overfitting.

Statistical analysis

The characteristics of the different sets are presented as the 
means and standard deviations, numbers of patients, or per-
centages. Continuous variables were assessed using Student’s 
t-test or Analysis of Variance and presented as the mean ± SD. 
Categorical variables were examined using the χ2 test or Fish-
er’s exact test, as deemed appropriate. The performance of the 
DLMs was evaluated by the receiver operating characteristic 
(ROC) curve for implant pacemaker analysis, and the area 

Table 1   | Baseline characteristics

BMI body mass index, DM diabetes mellitus, HTN hypertension, HLP hyperlipidemia, CKD chronic kidney disease, AMI acute myocardial 
infarction, STK stroke, CAD coronary artery disease, HF heart failure, Afib atrial fibrillation, COPD chronic obstructive pulmonary disease

Development set Tuning set Internal validation set External validation set p value

Demographics
GENDER  < 0.001
Female 15651(61.6%) 6473(64.7%) 4430(60.9%) 3876(72.2%)
Male 9777(38.4%) 3534(35.3%) 2845(39.1%) 1495(27.8%)
Age (years) 62.20 ± 16.22 62.64 ± 16.41 57.20 ± 15.74 62.83 ± 14.82  < 0.001
Height (cm) 159.48 ± 8.73 158.87 ± 8.50 159.86 ± 8.92 159.75 ± 8.46  < 0.001
Weight (kg) 59.83 ± 12.25 59.96 ± 12.69 61.27 ± 12.46 61.37 ± 12.50  < 0.001
BMI (kg/m2) 23.72 ± 3.99 23.89 ± 4.16 24.09 ± 3.77 24.06 ± 4.01  < 0.001
BMD -0.95 ± 1.74 -0.96 ± 1.74 -0.53 ± 1.75 -1.02 ± 1.64  < 0.001
BMD_Group  < 0.001
Normal 12590(49.2%) 4940(49.1%) 4420(60.1%) 2547(47.4%)
Osteopenia 7476(29.2%) 2934(29.2%) 1787(24.3%) 1753(32.6%)
Osteoporosis 5508(21.5%) 2185(21.7%) 1142(15.5%) 1071(19.9%)
Disease history
AMI 281(1.1%) 100(1.0%) 34(0.5%) 37(0.7%)  < 0.001
STK 3026(11.9%) 1232(12.3%) 420(5.8%) 632(11.8%)  < 0.001
CAD 4063(16.0%) 1629(16.3%) 675(9.3%) 1124(20.9%)  < 0.001
Afib 1110(4.4%) 508(5.1%) 112(1.5%) 151(2.8%)  < 0.001
HF 2056(8.1%) 911(9.1%) 168(2.3%) 338(6.3%)  < 0.001
DM 4817(18.9%) 2147(21.5%) 779(10.7%) 1167(21.7%)  < 0.001
HTN 1369(5.4%) 576(5.8%) 149(2.0%) 243(4.5%)  < 0.001
CKD 3985(15.7%) 1653(16.5%) 342(4.7%) 448(8.3%)  < 0.001
HLP 7530(29.6%) 3113(31.1%) 1480(20.3%) 2232(41.6%)  < 0.001
COPD 4434(17.4%) 1546(15.4%) 594(8.2%) 1211(22.5%)  < 0.001
All-cause mortality, n (%) 3074(12.1%) 1321(13.2%) 273(3.8%) 337(6.3%)  < 0.001
Follow-up (days) 1063.92 ± 1064.57 1074.36 ± 1055.86 1137.49 ± 1143.11 1704.79 ± 1164.90  < 0.001
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under the curve (AUC), sensitivity (Sens.), specificity (Spec.), 
positive predictive value (PPV), and negative predictive value 
(NPV) were also calculated. The operating point was selected 
based on the maximum of Youden’s index in the training set. 
Finally, we used multivariable Cox proportional hazards models 
to analyze the relationship between the baseline characteristics 
and the outcomes of interest. Hazard ratios (HRs) and 95% 
confidence intervals (95% CIs) were used for comparisons. 
Statistical analysis was carried out using the software environ-
ment R version 3.4.4. We used a significance level of p < 0.05 
throughout the analysis.

Results

Baseline characteristics

Patient characteristics of the development, tuning, inter-
nal validation and external validation cohorts are shown 
in Table  1. Patients in the development cohort were 
more likely to be female and had a lower BMI and more 
comorbidities than patients in the validation cohorts. In 
the development set, 5508 patients (21.5%) had osteopo-
rosis, 7476 patients (29.2%) had osteopenia, and 12,590 
patients (49.2%) had normal BMD. In the internal vali-
dation cohort, 1142 patients (15.5%) had osteoporosis, 
1787 patients (24.3%) had osteopenia, and 4420 patients 
(60.1%) had normal BMD, while in the external valida-
tion cohort, 1071 patients (19.9%) had osteoporosis, 
1753 patients (32.6%) had osteopenia, and 2547 patients 
(47.4%) had normal BMD. In the normal, osteopenia, and 
osteoporosis groups, it can be observed in Table 2 that as 
the BMD decreased, the proportion of females and their 
age increased, while their height and weight decreased; 
additionally, the proportion of comorbidities increased. 
Supplementary Fig. 1 shows that the proportion of osteo-
penia and osteoporosis in different gender and age strati-
fications was the lowest for osteoporosis in males as age 
increased, while in females, the proportion of osteoporosis 
increased with age, with almost 50% of women over 79 
years old having symptoms of osteoporosis. To under-
stand the differences in osteoporosis between genders. The 
gender-stratified results were presented in Supplementary 
Tables 1 and 2.

Performance of CXR‑OP to identify osteoporosis

The algorithm provided discrimination between the oste-
oporosis and no osteoporosis groups, with an AUC of 
0.930 and corresponding sensitivity of 92.9%, specific-
ity of 78.8%, positive predictive value of 44.6%, nega-
tive predictive value of 98.4% and F score of 0.603 in the 

internal validation set and an AUC of 0.892 and corre-
sponding sensitivity of 92.9%, specificity of 68.1%, posi-
tive predictive value of 42.1%, negative predictive value of 
97.5% and F score of 0.579 in the external validation set, 
as shown in Fig. 2. In addition to the performance of the 
10-crop approach, the results for the 1-crop and different 
BMD parts are presented in Supplementary Figs. 2 and 3. 
Notably, in the spine region, the AUC improved further to 
0.940 in the internal validation set.

The model performance was further stratified by hos-
pital department, age group and sex. Looking at different 
hospital departments, the health check center had the high-
est AUCs of 0.948 and 0.950 in the internal and external 
validation sets, respectively. In terms of gender stratifica-
tion, the AUC was better for males than females. Among 
age stratifications, the AUC was highest for those under 60 
years old. Finally, among the combinations of sex and age, 
males under 60 years old had the highest AUCs of 0.942 
and 0.933 in the internal and external validation sets, 
respectively, as shown in Fig. 3. Furthermore, to provide 

Table 2   Baseline characteristics in different stages of osteoporosis

BMI body mass index, DM diabetes mellitus, HTN hypertension, 
HLP hyperlipidemia, CKD chronic kidney disease, AMI acute myo-
cardial infarction, STK stroke, CAD coronary artery disease, HF heart 
failure, Afib atrial fibrillation, COPD chronic obstructive pulmonary 
disease

Normal Osteopenia Osteoporosis p value

GENDER  < 0.001
Female 8526(49.8%) 6043(78.0%) 4207(88.8%)
Male 8579(50.2%) 1705(22.0%) 531(11.2%)
Age 

(years)
51.86 ± 14.40 63.92 ± 13.08 72.42 ± 11.50  < 0.001

Height 
(cm)

163.40 ± 8.57 158.17 ± 7.71 154.70 ± 6.86  < 0.001

Weight 
(kg)

66.36 ± 12.81 59.34 ± 10.44 53.78 ± 9.78  < 0.001

BMI (kg/
m2)

24.58 ± 3.88 23.59 ± 3.71 22.52 ± 3.80  < 0.001

BMD (T 
score)

0.56 ± 1.13 -1.72 ± 0.40 -3.15 ± 0.56  < 0.001

Disease 
history

AMI 58(0.3%) 46(0.6%) 33(0.7%) 0.001
STK 689(4.0%) 763(9.8%) 613(12.9%)  < 0.001
CAD 1430(8.4%) 1167(15.1%) 801(16.9%)  < 0.001
Afib 173(1.0%) 168(2.2%) 175(3.7%)  < 0.001
HF 315(1.8%) 327(4.2%) 306(6.5%)  < 0.001
DM 1662(9.7%) 1353(17.5%) 864(18.2%)  < 0.001
HTN 339(2.0%) 253(3.3%) 216(4.6%)  < 0.001
CKD 561(3.3%) 583(7.5%) 528(11.1%)  < 0.001
HLP 3253(19.0%) 2439(31.5%) 1407(29.7%)  < 0.001
COPD 1303(7.6%) 1149(14.8%) 910(19.2%)  < 0.001
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a clearer insight into the regions observed by the AI during 
predictions, we also generated visual heatmaps to illustrate 
the significant image information in Supplementary Fig. 4.

Prediction of long‑term risk of mortality

Figure 4 shows the prognostic value in patients stratified 
by DXA or CXR-Osteoporosis to emphasize the addi-
tional prognostic value of CXR-OP. In the traditional 
DXA examination of bone density, the incidence of all-
cause mortality was 7.0% at 2 years and 19.6% at 8 years 
in the osteoporosis group in the internal validation set, 
which was not significantly higher than that in the no 
osteoporosis group (1.3% and 4.6%), with an adjusted HR 
of 1.39 (95% CI: 0.96–2.01). There was no significant 
difference observed in the external validation set. We 
further analyzed the CXR-OP classification and found 
that the incidence of all-cause mortality was 6.0% at 2 
years and 17.3% at 8 years in the osteoporosis group in 
the internal validation set, which was significantly higher 
than that in the no osteoporosis group (0.8% and 3.3%), 

with an adjusted HR of 2.59 (95% CI: 1.83–3.67). This 
relationship was also validated in the external validation 
set. The demographic based on mortality status in the 
internal and external validation sets were presented in 
Supplementary Table 3.

Figure 5 shows the risk matrices of different CXR-
OP and DXA on all-cause mortality. Stratified by DXA, 
osteoporosis predicted no higher all-cause mortality (HRi 
1.08, 95% CI 0.83–1.42 [P = 0.561]; HRe 0.93, 95% CI 
0.72–1.19 [P = 0.559]) than no osteoporosis in either 
validation cohort. Importantly, patients with CXR-OP( +) 
significantly contributed to higher risks of all-cause mor-
tality (HRi 2.53, 95% CI 1.76–3.62; HRe 1.85, 95% CI 
1.37–2.48) compared with those with CXR-OP(-). CXR-
OP independently provided the ability of risk stratification 
on adverse outcomes.

Fig. 2   ROC curves of DLM 
predictions based on CXR to 
detect osteoporosis. Osteopo-
rosis is defined as an actual T 
score of ≤ -2.5. The operating 
point was selected based on the 
maximum of Youden’s index 
in the tuning set and presented 
using a circle mark, and the area 
under the ROC curve (AUC), 
sensitivity (Sens.), specific-
ity (Spec.), positive predictive 
value (PPV), and negative 
predictive value (NPV) were 
calculated

Fig. 3   The AUCs of ROC curves of DLM predictions based on CXR 
to detect osteoporosis in different sex and age stratifications. ER: 
Emergency Room; IPD: Inpatient Department; OPD: Outpatient 
Department; PEC: Physical Examination Center

◂
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Therefore, we proceeded to validate BMD in patients who 
had not undergone DXA examination. The prediction of the 
long-term development of all-cause mortality in patients 

stratified by CXR-OP after adjustment for age and sex is 
shown in Fig. 6. The incidence of all-cause mortality was 
7.3% and 17.5% for 2 and 8 years, respectively, in those 

Fig. 4   Long-term incidence of developing mortality events stratified 
by DXA or CXR-Osteoporosis. The analyses were conducted in both 
the internal and external validation sets. The tables show the at-risk 

populations and cumulative risk for the given time intervals in each 
risk stratification
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stratified as CXR-Osteoporosis, compared with 2.0% and 
5.2% for 2 and 8 years in those stratified as CXR-No Osteo-
porosis with an adjusted HR of 1.67 (95% CI: 1.61–1.72) in 

patients without a DXA examination. Moreover, to under-
stand the demographic differences between the CXR-Osteo-
porosis and CXR-No Osteoporosis groups, we presented the 
demographic comparison in Supplementary Table 4.

Discussion

This study developed a DLM AI model based on CXR that 
can predict BMD T scores and classify high-risk osteoporo-
sis patients. We also extended the application by identifying 
potential high-risk osteoporosis patients to warn them of 
their future high risk of death. For patients who have not 
undergone DXA examination for bone density, their risk of 
osteoporosis can be detected early through the existing CXR 
and AI model. The AI-enabled prediction of BMD T scores 
can be integrated into health information systems as a poten-
tial osteoporosis risk assessment, without additional man-
power, to enhance risk awareness to health care providers.

In another study that used DXA as the reference for 
bone density, opportunistic osteoporosis screening tools 
based on CT attenuation of the spine were used, which 
achieved an AUC of 0.83 [18]. A machine learning-based 
T score simulation also showed an accuracy of 0.82 [19], 
while using pelvis/lumbar spine radiographs for bone den-
sity assessment yielded AUCs ranging from 0.92 to 0.97 
[29]. In comparison, our tool exhibited a strong correlation 
with the gold standard DXA-measured BMD in both inter-
nal and external testing sets and demonstrated excellent 

Fig. 5   Risk matrices of long-term all-cause mortality stratified by 
CXR-OP and DXA. The hazard ratios were based on the Cox pro-
portional hazards model adjusted for sex and age. The color gradi-
ent represents the risk of the corresponding group, and nonsignificant 

results are shown as white. CXR-OP, deep-learning model to identify 
osteoporosis via chest X-ray; HR, hazard ratio (with 95% confidence 
limits)

Fig. 6   Long-term incidence of developing mortality events stratified 
by CXR-Osteoporosis in patients without a DXA examination. The 
analyses were conducted in both the internal and external validation 
sets. The tables show the at-risk populations and cumulative risk for 
the given time intervals in each risk stratification
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discriminatory performance in classifying osteoporosis 
(with AUCs of 0.93 and 0.89, respectively).

In terms of performance in different regions, especially in 
the spine, the AUC can be enhanced further, reaching 0.940. 
In women aged 50 to 60 years with more than 3 years of 
menopause, we tend to observe lower T-scores in the spine 
as opposed to the hip [35]. Differences in bone loss across 
various parts of the body and the ratio of cortical to can-
cellous bones contribute to variations in BMD. Cancellous 
bone, with its higher turnover rate, tends to be lost earlier 
than cortical bone. This suggests that the presence of more 
cancellous bone in the spine may explain the earlier loss 
of bone matrix in early-stage osteopenia and a more pro-
nounced discrepancy in late-stage osteoporosis [36]. Typi-
cally, screening for osteoporosis in chest radiographs relies 
on assessing the clavicles, ribs, and spine [37–39]. Conse-
quently, Fig. S4 reveals that our model predominantly con-
centrates on distinguishing the rib area, potentially causing 
misinterpretations as lung fields and the CV system. Earlier 
research has emphasized a significant correlation between 
rib density and overall bone density (r = 0.86) [40], as well 
as correlations ranging from 0.67 to 0.75 among lumbar 
spine, femoral neck, and whole-body bone density [41]. 
Furthermore, our AI model was particularly precise in pre-
dicting osteoporosis in males and individuals below 60 years 
of age. In contrast, similar studies to ours had a lower AUC 
of 0.84 in predicting the risk of osteoporosis [42].

In addition to predicting osteoporosis risk, our model 
could also predict the risk of osteopenia with an AUC 
of approximately 0.85 (data not shown). This is because 
among the participants who underwent bone densitometry, 
those diagnosed with osteoporosis had a higher fracture 
rate, but there was a larger number of patients diagnosed 
with osteopenia. Consequently, the total number of frac-
tures was higher in the group diagnosed with osteopenia 
than in the group diagnosed with osteoporosis [43]. Medical 
guidelines recommend further examination or therapeutic 
interventions for osteopenia or osteoporosis [11, 44, 45].

As individuals age and their bodies undergo the aging 
process, they become more susceptible to chronic diseases 
[46], resulting in a lower quality of life [47] and a higher 
risk of osteoporosis [48] and fractures [49]. Therefore, when 
treating older adults with multimorbidity, it is important to 
consider the competing risk of death when assessing the 
risks and benefits of treatment [50]. Clinicians may use vali-
dated prediction models, such as the FRAX tool [51] and 
Garvan fracture risk calculator [52], to compare the absolute 
risk of fracture with the risk of death. By doing so, they can 
make more informed decisions regarding treatment options 
for their patients. In our study, we used medical record data 
to assess the risk of mortality in patients with osteoporo-
sis. When classified according to the reference standard of 
DXA, patients with osteoporosis had a risk of mortality of 

1.39 (95% CI: 0.96–2.01) in both the internal and external 
validation sets. However, when classified using the CXR-OP 
system, the AI model predicted a higher risk of mortality in 
individuals with a higher risk of osteoporosis, with an HR 
of 2.59 (95% CI: 1.83–3.67), which was also validated in the 
external validation set. In Fig. 6, analogous outcomes were 
found in the cohort that did not undergo DXA examinations.

Supplementary Table 4 illustrates that within the CXR-
OP group, there is a higher representation of females, older 
individuals, lower stature, reduced body weight, lower 
BMI, and a greater prevalence of various medical histo-
ries. Despite the CXR-OP group in Supplementary Table 4 
appearing roughly 20 years older than the CXR-NO OP 
group, we conducted a gender and age-stratified analysis 
on the internal/external validation sets depicted in Fig. 3 to 
validate the model's predictive capabilities. Figure 3 reveals 
optimal predictive performance in the population under 60 
years old (AUC: 0.948/0.926), with a gradual decline in per-
formance with increasing age. Moreover, in Figs. 4 to  6 our 
Cox proportional hazards model was adjusted for both sex 
and age. Consequently, the model does not forecast age but 
rather showcases discriminative abilities for individuals with 
osteoporosis. As a result, our model not only predicts the 
risk of osteoporosis but also assesses the risk of mortality.

This retrospective study has several limitations. Firstly, 
while CXRs were gathered from a medical center, validat-
ing CXR-OP's accuracy and applicability in the community 
necessitates prospective studies. Secondly, despite attempts 
to address class imbalance and overfitting, careful evalu-
ation is essential for the DLM's generalization, with fur-
ther studies required for confirmation. Thirdly, the DLM-
identified CXR traits remain unspecified due to automated 
feature creation. Lastly, CXR-OP's osteoporosis detection 
uses a limited T score range (≤ -2.5 and > -2.5), differing 
from the World Health Organization's DXA-based criteria 
[53]. Osteopenia, less severe but clinically relevant, war-
rants regular bone density monitoring to prevent progres-
sion. Despite its CXR-based osteoporosis screening role, 
CXR-OP doesn't consider actual density or fracture risk in 
a patient's clinical context.

Conclusion

We developed a DLM from a large set of CXRs validated 
by DXA to identify osteoporosis. This novel strategy pro-
vides a common, feasible, and affordable method to assist 
physicians in the early identification of individuals with a 
risk of osteoporosis. AI-enabled CXR may permit the addi-
tion of significant prognostic implications for osteoporosis 
and serve as a screening tool to improve quality of life and 
reduce the risk of death.
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